British Transplantation Society

GUY'S HOSPITAL, LONDON

9th November 1983
SMALL ALIQUOT, REPEATED TRANSFUSIONS FROM A SINGLE, THIRD PARTY, HLA-DR DEFINED DONOR

In a single centre trial of the effects of transfusions, we have continued to pursue a unique method of preparing our heterogeneous group of graft recipients. Prospective cadaveric recipients, who were not previously transfused, received a single unit of CPAA stored blood in three equal aliquots on Day 0, 1,4 and 28. The blood donor was selected from a pool of HLA-DR defined donors who had a similar HLA specificity to the prospective recipient, but differed at one or more alleles of the A, B, C or DR locus. Mistakes were minimized to avoid broad sensitization.

Twenty-seven patients are included. Twenty kidneys are functioning well between 66 - 970 days, with the majority more than one year. More than 95% of these kidneys are beyond three months which represents the period of maximal transfusion effect. Of the seven kidneys lost within that time frame, two were unrelated to rejection. Rejection crises, in general were mild and easily reversed.

In conclusion, small aliquot transfusions, obtained from a single highly defined donor, is an effective method of producing a beneficial effect, and this suggests that less blood is required than is currently being used.
MINIMAL SENSITIZATION FOLLOWING DELIBERATE UNRELATED TRANSFUSIONS IN RENAL PATIENTS

Tissue Typing Laboratory, St. Mary's Hospital, and Renal Transplant Unit,
Manchester Royal Infirmary, Manchester.

The beneficial effect of blood transfusions on graft survival is now generally accepted although one problem is the risk of sensitization. We have investigated sensitization in potential renal transplant patients following deliberate unrelated transfusions (DUT). Fifty patients entered the study. The protocol entailed giving 3 units of blood, each at 4-weekly intervals. We monitored the exact weight, storage time, leucocyte count and viability for each TUT. The cytotoxic antibody status of each patient was assessed against a panel of peripheral blood lymphocytes and CLL cells, prior to and 2 weeks following each TUT. Six patients received one TUT: one produced antibodies to B cells and one to T and B cells, another received a cadaver kidney. Twelve patients received 2 TUT: one then received a cadaver kidney. Thirty-two patients received 3 TUT: 7 produced antibodies to T and/or B cells, another 4 received cadaver kidneys. Of the 8 sensitized patients, 2 produced antibodies to T cells, 4 to B cells, and 3 to both T and B cells. Reactivity was against 5-30% of the panel of PHL and against 1-60% of the panel of CLL cells. The appearance of these antibodies was transient. They became undetectable within one to six weeks. The nature of the transfused blood was found to vary: weight 170-365g; storage time 6-29 days; leucocyte content 0-7 x 10⁹/ml; leucocyte viability 0-100%. We conclude that deliberate TUT rarely give rise to high levels of sensitization. Clinical data on those patients who received transplants will be presented.
IMPROVED RENAL ALLOGRAFT SURVIVAL IN DOGS FOLLOWING PLATELET TRANSFUSION AND SHORT TERM CYCLOSPORIN A TREATMENT

K. Cooney, R.Y. Calne, R. Merion, K. Rolles, R. Stewart, Department of Surgery, Addenbrooke's Hospital, Cambridge.

The beneficial effects of both third party and donor specific blood transfusions on renal allograft survival are well established. Although the mechanisms remain unclear and there is a risk of producing antibodies against donor antigens, a similar beneficial effect using platelets has been achieved in primates. We have carried out a preliminary study in 18 mongrel dogs using platelets from their unrelated kidney donors at the time of renal allografting. Prior to surgery 100 ml donor blood was removed by venous cutdown. Bilateral recipient nephrectomy was performed and immediately following revascularisation of the grafted kidney approximately 5 x 10^9 donor platelets, concentrated from plasma, were administered. Each animal was given Cyclosporin A 25 mg/kg/day for the first 30 days post-operatively. The dose was reduced to 17.5 mg/kg/day on day 31 and again, to 12.5 mg/kg/day on day 61. The drug was discontinued on day 90. Excluding 7 animals dying from technical complications (two from pulmonary emboli), the median survival was 96 days (Table). Six dogs survived after Cyclosporin A treatment was stopped and, of these, two remained healthy and active at 12 and 13 months when they were stolen by antivivisectionists. Previously, we have shown that dogs with renal allografts treated with Cyclosporin A continuously (initially at 50 mg/kg/day, and reducing the dose to 25 mg/kg/day and 10 mg/kg/day on days 28 and 56 respectively), had a median survival of 31 days (Table). There is no previous report of prolonged renal allograft survival in dogs after stopping Cyclosporin A therapy.

<table>
<thead>
<tr>
<th>Group</th>
<th>No</th>
<th>Survival (Days)</th>
<th>Median Survival (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Platelets</td>
<td>17</td>
<td>16, 11, 11, 13, 17, 19, 26, 26, 26, 31, 35, 52, 62, 68, 147, 160, 275</td>
<td>21</td>
</tr>
</tbody>
</table>

1. Roclisfo, JCC et al. Lancet 1982; 1; 1117
PRELIMINARY RESULTS OF A CLINICAL TRIAL OF THEOPHYLLINE AS AN ADJUVANT IMMUNOSUPPRESSIVE AGENT

F.J. Rullier, C.J.J. Hoffmans, C.W. Rovers, M.B. Bums, A.M. Davison,
G.R. Giles, University Department of Surgery, St. James's University Hospital, Leeds.

It has been suggested that the phosphodiesterase inhibitor Theophylline may reverse steroid-resistant rejection episodes after transplantation by stimulating cell activity. In an attempt to determine whether routine amphotericin administration (950 mg/day) would improve graft survival 37 recipients of first cadaveric renal allografts, matched for age, sex, HLA-A and -B typing and transfusion history were prospectively randomised to receive either Azathioprine + steroids (A+P) or Azathioprine+Amphotericin (A) from the day of transplantation. Rejection episodes were treated with i.v. boluses of Methylprednisolone (MP). All patients were monitored for changes in circulating T-cell subsets with the OKT monoclonal antibodies.

The 1-year renal graft survival rates were 11/18 (61%) in the A+P group compared with 15/19 (79.4%) in the A group giving mean ± SD serum creatinines at 3 months of 172 ± 36 umol/l and 120 ± 50 umol/l respectively. The A+P group required more MP for rejection than did the A group (mean grams MP ± SD, 6.4 ± 2.3 v 3.7 ± 2.7 respectively, p < 0.001). During both non-rejecting and rejecting phases OKT4/OKT8 ratios were higher in the A+P group than in the A group (2.19 ± 1.5, n = 88 v 1.58 ± 1.24 n = 119, p < 0.002) during quiescence and 2.92 ± 1.5, n = 69 v 1.93 ± 1.44, n = 31, p < 0.01 during rejection). In both phases this was due to reduced percentages of OKT4- positive cells in the amphotericin-treated group (p < 0.002). We conclude that amphotericin may be a useful adjunctive agent to conventional immunosuppression and appears to potentiate the reduction in the number of circulating lymphocytes with helper phenotype.
REMOVAL AND PREVENTION OF RESYNTHESIS OF ANTI-HLA ANTIBODIES IN PATIENTS
WAITING RENAL TRANSPLANTATION

D. Taube, M. Thick, K. Welsh, L. Kennedy, H. Bewick, J.S. Cameron, C.S. Ogg,
C.J. Wadge, D.C. Williams, Guy's Hospital, London.

One third of our patients awaiting renal transplantation have circulating
anti-HLA Class I antibodies which, when directed against donor cell
antigens, make transplantation impossible. In order to remove and prevent
the resynthesis of these antibodies, we have plasma exchanged and treated
five high priority anti-HLA antibody-rich patients with cyclophosphamide
and prednisolone. Dilution and absorption experiments indicated that these
antibodies were predominantly directed against single HLA Class I antigens
which, in high titre, cross reacted with multiple HLA Class I antigens.
Before treatment, the patients' anti-HLA antibody titres persistently
ranged between 1/15 and 1/128 and their sera reacted with over 9% of our
lymphocyte donor panel. Following treatment, their anti-HLA antibody
titre fell to 1/8 or less and panel reactivity was reduced to less than
4%. Three of the five patients have subsequently been successfully
transplanted and the other two are awaiting transplantation. The pre-
treatment sera of two of the three transplanted patients gave positive
cross matches with their donor's cells, whereas the cross matches with
their post treatment sera were negative.
ABSORPTION OF AUTOANTIBODIES FROM THE SERA OF RENAL PATIENTS USING AUTOLOGOUS LYMPHOBLASTOID CELL LINES

M.H. Deierholz, A. Ting, P.J. Morris, Nuffield Department of Surgery, John Radcliffe Hospital, Headington, Oxford.

It has been demonstrated by several groups that autoantibodies may be responsible for positive pretransplant crossmatches but are not damaging to renal allografts, and may in fact enhance graft survival. If a patient has only autoantibodies then a positive crossmatch may be disregarded in planning for a transplant. Unfortunately, some patients appear to have both auto and allograft antibodies and it may be impossible to determine which is responsible for a positive crossmatch. We have recently performed absorption studies using autologous Epstein-Barr virus transformed B-lymphoblastoid cell lines from a number of patients on our transplant waiting list in an attempt to differentiate autoantibodies from alloantibodies. Three groups of patients were studied and two to four sera were tested from each patient. A two stage absorption procedure was employed using $5 	imes 10^9$ cells to absorb 10 ml of each serum sample studied. Group A consisted of four patients who were nontransfused and awaiting a first transplant and had only autoantibodies. Group B included three patients who were highly sensitized but had no detectable autoantibodies. Group C was made up of three highly sensitized patients who had autoantibodies detected in autologous crossmatch. Unabsorbed and absorbed sera were crossmatched against autologous T and B cells, a panel of random normal T and B cells, and a panel of B cells from patients with chronic lymphocytic leukemia, which are known not to react with autoantibodies. In Group A, all activity against autologous and panel cells was removed by cell line absorption. In Group B, where no autoantibodies were detected, no effect of absorption was seen on reactivity to either the CLL or normal panel cells. The results in Group C dramatized removal of all activity towards autologous cells, no effect on CLL activity, and removal of 10-50% of activity against the normal panel. We conclude from this data that lymphoblastoid cell lines can be used to absorb autoantibodies but will not affect alloantibodies. Using cell line absorptions, it is possible to differentiate autoantibodies from alloantibodies when they occur together in the sera of patients awaiting transplantation.
C. Rudge, M. Thick, L. Kennedy, K. Walsh, Tissue Typing, Guy's Hospital, London.

The proportion of sensitised patients awaiting retransplantation is increasing, and requires a disproportionately large share of the total resources. We examined anti-HLA antibodies produced by 100 patients who had lost their first renal allograft, and related this to the Class 1 mismatch of the failed graft. None of these patients had been previously sensitised. 66% of these patients produced anti Class 1 antibodies. Of these, 26% were poly specific, and 74% were narrowly specific. 81% of the narrowly specific antibodies were directed against a mismatched determinant on the failed graft. Specificity was determined using a computerised 2 x 2 statistical test, and cross-reactivity was tested by dilution and specific absorption followed by backtesting. The degree of mismatch did not affect the number or specificities of the antibodies produced. However, some mismatched determinants were more likely to induce antibody production. Since these determinants are common, they not only induce sensitisation more frequently, but the antibody will also be directed against significant numbers of donor kidneys at retransplantation. Therefore, mismatch of these determinants will significantly affect the probability of being able to receive a second graft.
SYNERGY BETWEEN T CELL SUBSETS AND LYMHPHOKINE IN ACUTE ALLOGRAFT REJECTION

Interrelationships between lymphoid populations and lymphokines have been investigated in rats, produced by lethal X-radiation and bone marrow reconstitution of adolescent thymectomized LEW. Heterotopic (LEW x BN)F1 cardiac allografts are rejected acutely in unmodified LEW (c.7 days) yet survive indefinitely in B hosts. Adoptive transfer of 10^8 alloimmune splenic T cells (Tal) into B recipients results in rejection of long standing allografts within 10 days. However, concomitant administration of Interleukin 2 rich conditioned medium (II-2CM) with 10^8 Tal results in graft rejection in 9 days. Tal were divided into T helper (Th) and T cytotoxic/suppressor (To/s) populations using monoclonal antibody techniques. Transfer of Th (W3/25+OX8-) resulted in graft destruction in a time frame inversely related to the number of cells transferrred (2 x 10^7 - 35 days, 10^8 - 13 days), and this was independent of the concomitant IL-2 administration. The transfer of To/s (OX8+ W3/25-) never resulted in rejection; all grafts survived indefinitely. However, the addition of IL-2CM to the inoculum initiated a palpable deterioration in graft function between 5 - 8 days, which resolved despite continuing IL-2CM therapy. These findings were supported histologically. Recombining 5 x 10^7 Th and 4 x 10^7 To/s (=10^8 Tal) + II-2CM, and transfer, resulted in acute rejection. These data suggest synergy between Th, To/s and IL-2CM in the acute allograft response, with Th playing a pivotal role.
Cyclosporin A Induces High Levels of Circulating T Suppressor Derived IL-2 Inhibitor in Vivo

P.A. Lear, N.L. Tilney, J.W. Kupiec-Weglinski (R.A. Sells), Surgical Research Laboratory, Harvard Medical School, Boston, Massachusetts.

(Lew x BNf, cardiac allografts survive 1 week in unmodified Lew rats, indefinitely in recipients treated with Cyclosporin A (CyA, 15 mg/kg i.m. for 7 days). Acute rejection of long standing grafts in CyA modified hosts could be recreated through the abrogation of T suppressor lymphocytes (Ts) by Cyclophosphamide (Cy, 50 mg/kg i.p.), followed by the administration of syngeneic allogeneic lymphocytes. To measure the activity of a putative Ts derived IL-2 inhibitor, sera from CyA and CyA + CY treated heart grafted recipients were tested for their ability to inhibit IL-2 induced proliferation of an IL-2 dependent cytoytic T cell line (CTLL-2). Data are presented from a representative experiment with the activity of IL-2 inhibitor expressed as the ratio of \(^{3}H\)-thymidine incorporation by CTLL-2 cultured with IL-2 (2 units) + graded concentrations of experimental sera/cultures containing IL-2 alone.

<table>
<thead>
<tr>
<th>Serum concentration</th>
<th>IL-2 inhibitor in experimental animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CyA (7 days post Ts)</td>
<td>CyA (30 days) CyA (30 days) + CY</td>
</tr>
<tr>
<td>50%</td>
<td>58% 88% 66%</td>
</tr>
<tr>
<td>25%</td>
<td>33% 42% 36%</td>
</tr>
<tr>
<td>12.5%</td>
<td>0% 27% 5%</td>
</tr>
<tr>
<td>5%</td>
<td>0% 1% 0%</td>
</tr>
</tbody>
</table>

Increasing the IL-2 concentrations (10\(\mu\) vs 5\(\mu\)) exceeded the suppressive activity of IL-2 inhibitor in sera of CyA + CY treated hosts, but was less effective in CyA only treated animals. This report is first to describe elevated endogenous levels of IL-2 inhibitor in CyA modified graft recipients, which is significantly diminished following CY therapy. CY-sensitive Ts may contribute to the acquisition and maintenance of CyA mediated immunosuppression in vivo.
DOES ATN INFLUENCE GRAFT SURVIVAL IN PATIENTS RECEIVING AZATHIOPRINE (AZA) ON CYCLOSPORIN A (CYA)

Renal Transplant Unit, St. Mary's Hospital, Portsmouth.

208 patients were divided retrospectively into 4 groups on the basis of their immunosuppressive therapy (AZA vs CYA) and their requirement or not for post operative dialysis treatment (POD1). Of 125 patients on AZA, 95 of them (44%) required POD1 while 19 of 83 (44%) on CYA required POD1. N.S.

Actuarial graft survivals, HLA A, B, or DR mismatches, creatinine at 4 weeks and 6 months and the proportion of heart beating (HB) and non heart beating (non HB) donors were examined for each group.

Results. There were no significant differences in HLA A, B, or DR mismatches for patients in any of the groups nor in the creatinine levels at 4 weeks or 6 months although there was a trend for creatinine levels on CYA to be higher. There were differences in the relative proportions of HB and non HB donors between the 4 groups in that the CYA groups had a higher proportion of HB donors (46% CYA with no POD1 and 33% CYA and POD1) than did the AZA groups (22% AZA with no POD1 and 16% AZA with POD1), the difference between CYA and no POD1 and both AZA groups being significant (p<0.02). Actuarial graft survivals for the 4 groups are shown below and it can be seen that either on AZA or on CYA a requirement for POD1 produces a poorer long term prognosis. Ischaemic damage of the kidneys as evidenced by the need for intradialysis would seem to be a detremental factor to long term graft function.

![Graft Survival Graph](image)
DIFFERENTIATION BETWEEN REJECTION AND CYCLOSPORIN NEPHROTOXICITY USING FINE NEEDLE INTRA-RENAL MANOMETRY

J.R. Salaman, P.J.A. Griffin, Renal Transplant Unit, The Royal Infirmary, Cardiff.

Because of renal toxicity, rejection episodes can be difficult to diagnose in patients with kidney transplants receiving Cyclosporin. Wagner et al (Transplant. Rev., 12: 405, 1974) have left a catheter under the kidney capsule and shown that sub-capsular pressure rises with rejection but not with toxicity. We have measured intra-renal pressure by inserting a fine needle (25 g) directly into the kidney and connecting it to a manometer with a long length of fine plastic tubing filled with saline. The pressure was measured by observing the movement of a bubble in the tubing as pressure was applied and then released. Blood Cyclosporin levels were monitored regularly and conventional renal biopsies obtained whenever renal function declined. 32 recipients of renal allografts were studied between 1 and 270 days post transplant. 129 pressure readings were obtained (each an average of 2.3 measurements) during episodes of normal function, rejection, nephrotoxicity and acute tubular necrosis (ATN).

<table>
<thead>
<tr>
<th>Function Status</th>
<th>Episodes Studied</th>
<th>Biopsies Taken</th>
<th>Pressure Tests</th>
<th>Pressure mmHg (S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>38</td>
<td>1</td>
<td>78</td>
<td>27.1 (10)</td>
</tr>
<tr>
<td>Rejection</td>
<td>19</td>
<td>23</td>
<td>30</td>
<td>51.1 (18) p < 0.001</td>
</tr>
<tr>
<td>Toxicity</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>26.6 (4)</td>
</tr>
<tr>
<td>ATN</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>26.7 (4)</td>
</tr>
</tbody>
</table>

Rejection but not toxicity or ATN cause a highly significant increase in intra-renal pressure. This very simple test therefore might be of value in monitoring patients receiving Cyclosporin A.
HEART TRANSPLANTATION - THE FIRST 52 PATIENTS

Fifty two patients underwent cardiac transplantation between January, 1979 and July, 1st, 1983. Ages ranged between 16 and 52 (mean 42) years and all but four were men. 20 patients had cardiomyopathies and 23 ischaemic heart disease. During this period 353 patients were referred for transplantation, of whom 103 were assessed in hospital. 106 were accepted as potential recipients and of these 40 subsequently died while awaiting transplantation.

Donor ages ranged from 16 to 37 (mean 23) years and donor heart ischaemic time from 96 to 252 (mean 165) minutes. There was one operative death and 6 other deaths within 30 days of operation (early mortality 15%). Two immunosuppressive regimes have been used: antithymocyte globulin, azathioprine and steroids for the first 29 patients and cyclosporin A and steroids for the next 33 patients. All surviving patients have had right and left heart catheterisation at annual intervals.

Thirty of the 52 patients are surviving (3 year actuarial survival 51%). Of the 16 late deaths, 6 have been from acute rejection, 4 from accelerated coronary artery disease, 3 from infection and one each from dysrhythmia, graft failure and brain damage. Those patients who have survived beyond 6 months have had a substantial improvement in health status and in measured exercise capacity.
STRAIN SPECIFIC CALCIFICATION OF THE HEART IN THE CYCLOSPORIN TREATED MOUSE

I.A. Broland, R.A. Sells, J. Gosney, Renal Transplant Unit and Department of Pathology, Royal Liverpool Hospital, Prescot Street, Liverpool.

During toxicological studies on Cyclosporin A (CyA), it was found that CyA therapy (60 mg/kg orally for 14 days) in C3H/He mice induced weight loss, and changes in calcium metabolism which resulted in the deposition of calcium in the heart. Histological examination showed either multiple discrete foci of calcification or a diffuse calcifying process present chiefly in the interstitial fibrous tissue; changes which were accompanied by an increased serum urate and creatinine with hypocalcaemia (mean 2.12 ± 0.07 mmol/l (treated) v. 2.34 ± 0.09 mmol/l (control), P < 0.01). Subsequent metabolic studies performed in the Lewis rat, treated with CyA, revealed hypercalcuria (mean 0.016 ± 0.0007 mmol/24 hr. (treated) v. mean 0.003 ± 0.001 mmol/24 hr. (control), P < 0.01) and hypocalcaemia. These data may indicate CyA toxicity at the renal tubule with impaired calcium reabsorption.

Studies in other strains demonstrated similar findings in C57/Bl and DBA/2 mice. However, Balb/c, C3H/He and 'A' strain were not susceptible. Furthermore, the evident non-susceptibility of P. hybrid of susceptible and non-susceptible strains suggests that CyA toxicity in the mouse is an autosomal recessive trait.
PHENOTYPIC CHARACTERISATION OF NATURAL KILLER CELLS AFTER RENAL TRANSPLANTATION

G. Smith, A.W.G. Ritchie, G.D. Chisholm, Department of Surgery, University of Edinburgh.

A monoclonal antibody HNK-1 has been reported to identify natural killer (NK) and antibody dependent killer (K) cells. Using simultaneous two colour immunofluorescence analysis on a FAC1 IV, we have demonstrated an appreciable overlap in the expression of HNK-1 and Leu-2a (expressed on the 'suppressor/ cytotoxic' T cell subset). Further, we have shown that the HNK-1(+) Leu-2a(-) subset is located within B cell areas of normal lymphoid tissues - suggesting a physiological role of these cells in B cell regulation. (1) Functional analysis has revealed that the NK activity in fact resides within the HNK-1(+) Leu-2a(-) subset.

Monitoring of HNK-1(+) cells, in 20 patients given conventional immunosuppression, revealed a significant decline in the total numbers after transplantation but no correlation with rejection episodes.

In a smaller number of these patients, overlap studies of HNK-1 and Leu-2a expression were compared with similar analyses in long term graft recipients and healthy controls. The results (see table) show that while patients may have normal/high percentage numbers of HNK-1(+) cells, the percentage numbers (and therefore total numbers in these lymphoepithelial patients) of the HNK-1(+) Leu-2a(-) subset were lower than controls. This deficit was still present in patients transplanted over a year previously.

<table>
<thead>
<tr>
<th></th>
<th>A % Leu-2a(+)</th>
<th>B % HNK-1(+)</th>
<th>C % HNK-1(+) Leu-2a(-)</th>
<th>N=3/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal n=9</td>
<td>20.9*</td>
<td>13.9</td>
<td>7.9</td>
<td>56.8</td>
</tr>
<tr>
<td>Early post transplant n=4</td>
<td>20.4</td>
<td>19.3</td>
<td>6.5</td>
<td>31.7</td>
</tr>
<tr>
<td>Long term recipients n=5</td>
<td>36.0</td>
<td>25.7</td>
<td>4.0</td>
<td>15.6</td>
</tr>
</tbody>
</table>

These findings, in conjunction with our previous location of this subset to B cell areas, may account for the increased incidence of B cell malignancy and infection following transplantation.