‘The two faces of hepatitis E virus’

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Developing countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus genotype</td>
<td>1, 2</td>
</tr>
<tr>
<td>Transmission</td>
<td>Waterborne/faecal-oral</td>
</tr>
<tr>
<td>Reservoir</td>
<td>Human</td>
</tr>
<tr>
<td>Outbreaks</td>
<td>Small to very large</td>
</tr>
<tr>
<td>HEV as % of hepatitis</td>
<td>Common</td>
</tr>
<tr>
<td>Age distribution</td>
<td>Young</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>High mortality</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>No</td>
</tr>
</tbody>
</table>
HEV in England and Wales

- In the UK, hepatitis E disease traditionally associated with imported infections
- Established that HEV infections can be acquired indigenously
- Molecular characterisation indicates genotype 3 circulates in the UK
 - (genotypes 1 and 2 circulate through the developing world)
- Seroprevalence studies undertaken in the general population indicate a rate of ~13%
- 100 000 infections occur per year in England
Investigating transmission routes

- The detection of HEV Abs and RNA in swine and other animals has led to suggestions of a potential zoonosis with animals acting as reservoirs for HEV infection in humans.

- Studies from Japan/France where individuals became infected after consuming raw/undercooked pig, deer or boar meat.

- PHE case control study based on food questionnaires:
 - analysis suggests an association between the consumption of pork based products and HEV infection.

- Berto et al., 2012 provided evidence of HEV contamination in the pork production chain.
Enhanced surveillance of hepatitis E in England and Wales

Incidence in blood donors

1:7000

1:2850
Frequency of group 1 and 2 viruses by year
Change in the magnitude of risk

- Rise in case numbers associated with the emergence of a clade of viruses not commonly circulating prior to 2010
 - are these viruses more transmissible?
 - are these viruses more pathogenic?

- How have the risk factors changed?
 - Changes in farming practices or animal husbandry?
 - Changes in food processing or importation of meat?
Public health implications of HEV have grown

- Recognition of chronic HEV infections in the immunosuppressed population

Hepatitis E Virus and Chronic Hepatitis in Organ-Transplant Recipients

Nassim Kamar, M.D., Ph.D., Janick Selves, M.D., Jean-Michel Mansuy, M.D.,
Leila Ouezzani, M.D., Jean-Olivier Cointault, M.D., Lau Marie Danjoux, M.D., Do Jacques Izopet, Pharm

Chronic Hepatitis E with Cirrhosis in a Kidney-Transplant Recipient

TO THE EDITOR: Hepatitis E virus (HEV) is an important cause of acute viral hepatitis worldwide. Kamar et al. in this issue of the Journal and others have recently suggested that HEV infection might result in chronic hepatitis in immunocompromised patients. We report a rapidly progressing case of cirrhosis in a renal-transplant recipient with chronic HEV infection.

A 52-year-old man who had undergone kidney transplantation in March 2006 presented with increased aminotransferase levels in June 2006. Four months later, the alanine aminotransferase level reached 126 U per liter and thereafter plateaued at three times the upper limit of the normal range. Serologic testing for hepatitis C virus (HCV) and HCV RNA had been
Persistent, chronic hepatitis E

- Defined as persistence of plasma HEV RNA for > 3 months
- Infections can be difficult to identify
 - Patients have no clear symptoms and are anicteric
 - Modestly raised ALTs
- Diagnosis is often overlooked or mistaken for DILI or graft rejection
- Rapid progressive liver disease with 10% of patients developing cirrhosis within 2 years
- Majority of reported persistent cases in genotype 3
 - ~3 cases of genotype 4
 - 1 case of genotype 7 (camelid HEV)
 - No cases of genotype 1 and 2
Treatment

• Prognosis for patients with persistent infections is poor
• Reduction in immunosuppression leads to viral clearance in 25% of patients
• Initial cases treated with pegylated interferon α (HIV setting)
• Ribavirin has become the drug of choice
 • Overall SVR reported at 85%
• Increasingly recognising relapses
• Re-treatment with ribavirin has been successful but not in all cases
• Sofosbuvir and daclatasvir shown not to be effective
• Role of amino acid changes acquired during treatment?
Persistent HEV infections across England and Wales 2009-17

90 cases; 109 including audits/studies
Breadth of underlying disease

- **Underlying condition**
 - Solid Organ Transplant: 49
 - HIV: 15
 - HSCT: 12
 - Haemato-oncology: 4
 - Autoimmune: 2
 - Other immunosuppression: 1
 - Immunocompetent: 1
 - Unknown: 6

- **SOT breakdown**
 - Lung: 30
 - Heart +/- renal: 11
 - Pancreas +/- renal: 1

- **Haem-Onc breakdown**
 - T-PLL: 1
 - AML: 1
 - CLL: 2
 - Lymphoma: 11
Outcome

- Outcome data incomplete but show
 - At least 5 (50%) of those that died whilst viraemic had evidence of liver failure
 - Relapses after treatment cessation are relatively common, we are aware of 11 (11%)
<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Underlying condition</th>
<th>Immunosuppression</th>
<th>Serostatus at time of viral clearance (IgG S/CO)</th>
<th>RBV treatment [daily dose, duration (wks)]</th>
<th>eGFR</th>
<th>Toxicity</th>
<th>RBV dose reduction?</th>
<th>RBV clearance in stool?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lymphoma</td>
<td>-</td>
<td>POS 3.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>nil</td>
<td>nil</td>
<td>POS 19.18</td>
<td>1000mg, 11</td>
<td>-</td>
<td>no</td>
<td>no</td>
<td>yes x 2 (15d)</td>
</tr>
<tr>
<td>3</td>
<td>Heart/Renal Tx</td>
<td>Tacrolimus, Prednisolone</td>
<td>POS 9.86</td>
<td>600mg, 12</td>
<td>-</td>
<td>anaemia</td>
<td>yes</td>
<td>yes x 2 (30d)</td>
</tr>
<tr>
<td>4</td>
<td>Liver Tx</td>
<td>Tacrolimus, Prednisolone</td>
<td>NEG</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes x 1</td>
</tr>
<tr>
<td>5</td>
<td>Lymphoma</td>
<td>Chemotherapy</td>
<td>POS 18.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Renal Tx</td>
<td>Tacrolimus, MMF, Prednisolone</td>
<td>NEG</td>
<td>1000mg, 63</td>
<td>-</td>
<td>anaemia</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Renal Tx</td>
<td>Sirolimus</td>
<td>NEG</td>
<td>800mg, > 90</td>
<td>-</td>
<td>anaemia</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>CLL</td>
<td>-</td>
<td>POS 16.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Lymphoma</td>
<td>Chemotherapy</td>
<td>POS 20.01</td>
<td>800mg, 13</td>
<td>-</td>
<td>anaemia</td>
<td>yes</td>
<td>yes x 2 (27d)</td>
</tr>
<tr>
<td>10</td>
<td>Allograft BMT</td>
<td>-</td>
<td>NEG</td>
<td>-</td>
<td>70</td>
<td>anaemia</td>
<td>yes</td>
<td>yes x 2 (36d)</td>
</tr>
<tr>
<td>11</td>
<td>Lymphoma/CVID</td>
<td>-</td>
<td>NEG</td>
<td>-</td>
<td>-</td>
<td>anaemia</td>
<td>yes</td>
<td>yes x 2 (24d)</td>
</tr>
</tbody>
</table>
Increased numbers of treatment failures, including ‘relapses’

- Dosage of ribavirin? Treatment duration?
- Testing for viral clearance?
- Other factors?
- Future treatment options remain limited
Audit of HEV in transplant setting (in collaboration with QEH, Birmingham)

- Prevalence study of HEV viraemia in SOT/HSCT
- ~3000 patients undergoing TDM (ciclosporin/tacrolimus)
- 19/2826 HEV RNA pos (prevalence of 0.67%; 1:149)
 - 3 (15.8%) allogeneic HSCT recipients
 - 16 (84.2%) SOT recipients (6 kidney, 9 liver, 1 heart)
HEV Audit – predictive factors for HEV viraemia

• Comparison with the uninfected aviraemic patients
 • Statistically significant higher
 – ALT (p<0.0001)
 – Bilirubin (p=0.01)
 – Tacrolimus levels (p=0.002)
 – Ciclosporin levels (p=0.02)

• 88% of HEV-infected patients had an abnormal ALT value at the time of screening (>41 IU/L) compared with only 452 (16%) of the HEV RNA-negative patients.
HEV Audit – viraemic patients

• The diagnosis of hepatitis E infection was only considered clinically in one patient despite 88% have an abnormal ALT

• Development of antibody response does not lead to viral clearance

• Outcomes in 19 patients:
 • n=4 no/insufficient follow up
 • n=1 cleared at follow up
 • n=2 acute infections
 • n=12 persistent, chronic infections
Chronic hepatitis E in HIV-infected individuals

- Rarely reported – 4 cases in England and Wales
- Low CD4 counts, ART, HIV VL not detected
- Persistently raised LFTs
- All patients treated
 - n=1 – RIP
 - n=3 – successfully cleared virus
 - Peg IFN and Ribavirin, PegIFN, Ribavirin,
- HEV VL clearance following treatment associated with recovery of CD4
HEV and Blood Safety

- Growing momentum both in the UK and across Europe to address HEV and blood safety
- Joint NHSBT/PHE study established to look at blood safety
- Incidence in blood donors
 - Screened 225,000 donations
 - 1:2850 donations to be HEV RNA positive
- Transmission rates
 - Follow up of recipients of HEV containing blood products
 - 42% transmission rate
Clinical sequelae of HEV infection in 18 recipients

<table>
<thead>
<tr>
<th>Inferred immun-suppression</th>
<th>Number of recipients</th>
<th>Median weeks*</th>
<th>Proportion (%) who developed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>to RNA detection</td>
<td>to seroconvert</td>
</tr>
<tr>
<td>None or mild</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Moderate</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Severe</td>
<td>4</td>
<td>9</td>
<td>37.5</td>
</tr>
</tbody>
</table>

* Only numerate values included
** excludes those who died whilst infected
HEV and Blood Safety

• SaBTO (Advisory Committee on the Safety of Blood, Tissues and Organs) formed a working group
• 2016 - recommendation for the implementation of selective screening
 • Donations given to SOT and SCT patients
 • NHSBT extended this to neonates <1 year
• 2017- recommendation extended to universal screening
 • Blood donations (May 2017)
 • Tissues/organs/stem cells (October 2017)
• NB: blood screening will only reduce exposure as risk from diet still exists
• 2016 – selective screening of blood donations for vulnerable patient groups
• 2017 - extension to universal screening by HEV RNA
HEV clinical cases

Table:

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>8</td>
<td>17</td>
<td>35</td>
<td>21</td>
<td>23</td>
<td>32</td>
<td>17</td>
<td>20</td>
<td>34</td>
<td>35</td>
<td>20</td>
<td>14</td>
<td>276</td>
</tr>
<tr>
<td>2011</td>
<td>37</td>
<td>31</td>
<td>37</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>34</td>
<td>43</td>
<td>52</td>
<td>53</td>
<td>44</td>
<td>32</td>
<td>464</td>
</tr>
<tr>
<td>2012</td>
<td>30</td>
<td>50</td>
<td>45</td>
<td>49</td>
<td>62</td>
<td>62</td>
<td>76</td>
<td>37</td>
<td>33</td>
<td>52</td>
<td>57</td>
<td>52</td>
<td>605</td>
</tr>
<tr>
<td>2013</td>
<td>56</td>
<td>61</td>
<td>44</td>
<td>45</td>
<td>63</td>
<td>55</td>
<td>67</td>
<td>57</td>
<td>72</td>
<td>81</td>
<td>80</td>
<td>50</td>
<td>731</td>
</tr>
<tr>
<td>2014</td>
<td>68</td>
<td>69</td>
<td>83</td>
<td>87</td>
<td>79</td>
<td>89</td>
<td>106</td>
<td>62</td>
<td>79</td>
<td>65</td>
<td>75</td>
<td>63</td>
<td>925</td>
</tr>
<tr>
<td>2015</td>
<td>72</td>
<td>64</td>
<td>99</td>
<td>98</td>
<td>53</td>
<td>88</td>
<td>88</td>
<td>80</td>
<td>62</td>
<td>97</td>
<td>80</td>
<td>78</td>
<td>959</td>
</tr>
<tr>
<td>2016</td>
<td>86</td>
<td>74</td>
<td>98</td>
<td>100</td>
<td>96</td>
<td>77</td>
<td>81</td>
<td>72</td>
<td>53</td>
<td>61</td>
<td>44</td>
<td>49</td>
<td>891</td>
</tr>
<tr>
<td>2017</td>
<td>35</td>
<td>42</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>110</td>
</tr>
</tbody>
</table>

Graph:

- **X-axis:** Month/Year
- **Y-axis:** Frequency
HEV summary

• Differences in transmission routes, genotype distribution and disease pattern between HEV in the developed vs developing world
• Now recognised as a widespread zoonosis associated with rolling infections in England and Wales
• Currently in a period of heightened HEV activity; associated with the emergence of a novel phylotype
• Public health remit has changed following recognition of chronic hepatitis (need more testing in immunosuppressed patients)
• More work needed to look at possible sources of infection and control
Acknowledgements

Blood Borne Virus Unit, Public Health England
Emerging Infection and Zoonoses, Public Health England
NHS Blood and Transplant, Colindale
Animal and Plant Health Authority
DeFRA
Queen Elizabeth Hospital, Birmingham
Clinical colleagues