

Class II anti-HLA IgG2 and IgG3 DSAs Predict Poorer Outcomes in Chronic Antibody Mediated Rejection of Renal Allografts

Alexander Gueret-Wardle¹, Gaetano Lucisano¹, Sevda Hassan¹ Paul Brookes², Eva Santos-Nunez², Rachel Wilson², Fiona Powell², Dawn Goodall¹, Candice Clarke¹, Jack Galliford¹, Candice Roufosse¹, Michelle Willicombe¹, David Taube¹

Imperial College

¹ Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London (UK)

² Histocompatibility and Immunogenetics, Imperial College Healthcare NHS Trust, London (UK)

Authors have no disclosures

Imperial College

The Problem

The leading cause of late graft failure is chronic antibody mediated rejection [cAMR]

Sellares et al. Am J Transplant 2012

Redfield et al. Human Immunology 2016

Background

- Clear association of DSA with the development of cAMR and Transplant glomerulopathy [TG]
- Although many cases of antibody negative cAMR (30-50%)
- 2. cAMR and TG present significant problems that are often unresponsive to current standard of care therapies.
- 3. No clinically licensed treatment for cAMR
- 4. cAMR is one of the main barriers to improving long term graft survival

Significance of DSAs in cAMR at ICRTC

90 patients with cAMR March 2005 – Nov 2015

Significance of DSAs in cAMR at ICRTC

90 patients with cAMR March 2005 – Nov 2015

Background

Lefaucheur et al. JASN 2016

- 1. 125/635 pts developed a dn DSA at one year
- 2. IgG3 was associated with greater C1q binding in patients with acute AMR
- 3. Higher MI C4d deposition
- 4. Worse prognosis

Background

However

- 1. Heterogenous group histologically (AMR free, Acute AMR, S-AMR)
- 2. Looked at total subclasses combining class I+II immunodominant DSA
- 3. DSAs at 1 year post transplant
- 4. No specific group investigated histologically and serologically

Aims of our study

Focus on cAMR and antibody phenotypes

- Identify which antibody characteristics predict poor outcomes in cAMR
- Identify correlations between subclass profiles and histology

- Identify whether C1q binding influences allograft outcomes in cAMR
- Identify the most high risk patient groups with cAMR
- Potential to individualise future treatment

Imperial College

Methods

1657 CDC/FXCM negative transplant recipients investigated between March2005 – November 2015 All patients received monoclonal antibody induction, with a tacrolimus based, steroid sparing maintenance immunosuppressive protocol

ABOi/HLAi transplants were excluded

90 cases of biopsy proven cAMR

Only patients with an IgG DSA post transplant at the time of diagnosis of cAMR were included 57/90 (63.3%) IgG DSA positive

Diagnosis of chronic active AMR was based on Banff 2015 criteria

Median follow up was 5.5 years (IQR 3.2-7.3)

Methods

Sera were tested for class I HLA (A/B/Cw) and class II (DR/DQ) HLA antibodies at the time of diagnostic biopsy using the single antigen Luminex assay.

- Each sample was tested replacing the PE conjugated anti-pan IgG antibody with monoclonal antibodies specific for IgG1-4
- Each sample was also tested for C1q-fixing anti-HLA DSAs using SAg beads

Mean fluorescence intensity value of >500 was considered positive

Statistical and graphical analysis: IBM SPSS Statistics ver. 20.0

Demographics 1

Demographics	DSA+ cAMR n=57, (%)
Male Female	37 (64.9) 20 (35.1)
Age at Tx, years	45.3± 11.8
Caucasian Asian Afro-Caribbean Other	29 (50.8) 20 (35.2) 4 (7.0) 4 (7.0)
Pre-emptive	9 (15.7)
Live donor	21 (36.8)
HLA-A/B MM	2.3 ± 1.1
HLA-DR MM	1.3 ± 0.7
Total MM	3.6 ± 1.6
Induction Anti-CD52 mab Anti-IL-2R mab	44 (77.2) 13 (22.8)

DSA Characteristics

	Number of Cases	Median	IQR	p Value
	(%)	MFI	MFI	
Class I	7 (12.2)	1170	500-2554	-
Class II	20 (35.1)	1596	923-4964	<0.001
Class I + II	30 (52.7)	1572	900-4188	

DSA Characteristics

	Number of Cases	Median	IQR	p Value
	(%)	MFI	MFI	
Class I	7 (12.2)	1170	500-2554	-
Class II	20 (35.1)	1596	923-4964	<0.001
Class I + II	30 (52.7)	1572	900-4188	

	lgG1 (%)	IgG2 (%)	IgG3 (%)	IgG4 (%)
Class I	9 (15.8)	0 (0)	1 (1.8)	2 (3.5)
Class II	36 (63.1)	22 (38.6)	7 (12.2)	15 (26.3)

Results – Death Censored Allograft Survival – Class I IgG Subclasses

p = 0.841

Results – Death Censored Allograft Survival – Class II IgG Subclasses

$$p = 0.068$$

p = 0.004

Results – Death Censored Allograft Survival – Class II IgG Subclasses

Class II IgG4 100-_¬No ____Yes 80-Graft Survival 20-Time (years)

p = 0.017

Results – Death Censored Allograft Survival

Results – Death Censored Allograft Survival

Results – Class II Subclasses and microcirculatory inflammation

Glomerulitis score p=0.02

Peritubular Capillaritis score p=0.018

Results – Class II subclasses - Cg and C4d scores

Results – C1q binding

Imperial College

Summary

- 1. Class I IgG DSA subclasses do not affect allograft outcomes in cAMR
- 2. Class II IgG2 and IgG3 DSAs predict poor outcomes in cAMR
- 3. IgG2 and 3 combined have even poorer outcomes
 - IgG3 has a strong affinity for fixing complement and binding Fc receptors
 - IgG2 can bind complement although with less affinity than IgG1 and IgG3
 - IgG2 canonically stimulates production of IgG1 and IgG3
 - The presence of IgG2 may potentiate IgG3
- 4. The presence of multiple class II IgG subclasses predicts the worst outcome
- No grafts with 4 subclasses survived beyond 1 year

Summary

- 5. The greater the number of subclasses the more severe phenotype of cAMR histologically
- Higher MI, C4d and Cg scores
- 6. Patients with class II IgG2 and IgG3 DSAs or multiple subclasses may benefit from enhanced or novel treatment
- Syk inhibition, IL-6R blockade (Tocilizumab)

Acknowledgements

1. Patients and Families

2. Transplant Team at Imperial College Renal and Transplant Centre

3. H&I Scientists at Imperial College Healthcare NHS Trust

 National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London

Demographics 2 – Treatment groups

- 1. Optimisation 51/57 (89.4%)
- Tacrolimus [8-12 ng/ml]
- MMF [1.2-2.4 mg/l]
- Addition of steroids
- 2. Maintenance 6/57 (10.5%)
- Maintenance of Tacrolimus based immunosuppression [8-12ng/ml]
- 3. PEX/IVIg 24/57 (42.1%)
- 10 rounds of plasma exchange with a total of 4g/Kg of IVIg
- Plasma exchange era based with all treatments occurring between 2009-11
- 23/24 patients had a class II DSA
- 4. Other 2/57 (3.5%)
- Rituximab

Outcomes – Causes of graft failure

- 1. Number of failed grafts 37/57 (64.9%)
- 36/37 Rejection
- 1/37 Malignancy requiring nephrectomy

Results – Death Censored Allograft Survival – Class I IgG Subclasses

Results – MFI ranges according to total subclasses

Number of subclasses	MFI range
OSC	500 - 12500
1SC	850 - 11000
2SC	900 - 20500
3SC	600 - 8360
4SC	650 - 15250

Banff 2015 criteria for the diagnosis of cAMR

Chronic active ABMR²

- All three features must be present for diagnosis. As with acute/active ABMR, biopsies showing histological features plus evidence of current/recent antibody interaction with vascular endothelium or DSA, but not both, may be designated as suspicious, and it should be noted if the lesion is C4d-positive or C4d-negative, based on the criteria listed:
- 1 Histologic evidence of chronic tissue injury, including one or more of the following:
 - TG (cg >0), if no evidence of chronic thrombotic microangiopathy; includes changes evident by EM only (cg1a; Table 4)
 - Severe peritubular capillary basement membrane multilayering (requires EM)³
 - Arterial intimal fibrosis of new onset, excluding other causes; leukocytes within the sclerotic intima favor chronic ABMR if there is no prior history of biopsy-proven TCMR with arterial involvement but are not required
- 2 Evidence of current/recent antibody interaction with vascular endothelium, including at least one of the following:
 - Linear C4d staining in peritubular capillaries (C4d2 or C4d3 by IF on frozen sections, or C4d >0 by IHC on paraffin sections)
 - At least moderate microvascular inflammation ([g + ptc] ≥2), although in the presence of acute TCMR, borderline infiltrate, or infection, ptc ≥2 alone is not sufficient and g must be ≥1
 - Increased expression of gene transcripts in the biopsy tissue indicative of endothelial injury, if thoroughly validated
- 3 Serologic evidence of DSAs (HLA or other antigens):
 - Biopsies suspicious for ABMR on the basis of meeting criteria 1 and 2 should prompt expedited DSA testing

Imperial College

SYK Inhibition

- SYK-kinase is an important component of signalling system that activates both Fc and B cell receptor
- Activation culminates in the production of inflammatory cytokines
- Immunostaining of SYK in renal transplant biopsies with ABMR shows a role for SYK in the pathogenesis of DSA
- Rodent models of antibody mediated GN the inhibition of SYK was shown to prevent and in some cases reverse renal injury
 - McAdoo et al
- Currently undertaking a phase I open label trial of SYK inhibition in patients with cAMR

Choi et al. Am J Transplant 2017; 17:2381-2389

Blockade of IL-6R shows a reduction of alloantibodies Tocilizumab (IL-6R blocker)

Single centre open labelled study - 75 cases cAMR

36 who had SOC (RTX/ IVIg/ PLEX) received IL-6RB

(Tocilizumab for 6-18/12)

Reduced mean MCI and C4d scores

Better allograft survival compared to

80% predicted survival at 6yrs

Phase 1/2 open label desensitisation study
Patients who failed RTX, IVIg and PLEX
Reduction in DSA in 8/10 patients
After Tx - protocol biopsy at 6 months – no ABMR or
TG

Imperial College

DSA CHARACTERISTICS (2)

	Total Sc = 0	Total Sc = 1	Total Sc = 2	Total Sc = 3	Total Sc = 4
	(%)	(%)	(%)	(%)	(%)
Class I	24 (71)	9 (26.5)	1 (5.9)	0 (0)	0 (0)
Class II	10 (20.4)	16 (32.7)	8 (16.3)	12 (24.4)	3 (6.1)

